
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Implementing the Backtracking Algorithm and the

Brute Force Algorithm for Solving KenKen Puzzles

Muhammad Neo Cicero Koda - 13522108

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail (gmail): mneocicerok@gmail.com

Abstract—This paper presents the development and

evaluation of the backtracking algorithm and the brute force

algorithm for solving KenKen puzzles. KenKen is a Sudoku-like

puzzle game where a player must fill an n x n grid with numbers

ranging from 1 to n while adhering to certain constraints. The

brute force algorithm tries to go through all possible

combinations of numbers in the grid. On the other hand, the

backtracking algorithm only continues to expand on the list of

possible solutions that still adhere to KenKen’s constraints and

prunes the rest. The findings of this paper show that the

backtracking algorithm solves the puzzle in a considerably faster

amount of time compared to the brute force algorithm due to

how it selectively expands on promising solutions.

Keywords—KenKen; backtracking; brute force; puzzle solving;

I. INTRODUCTION

KenKen, also known as KenDoku or Square Wisdom, is a
Sudoku-like puzzle game where a player must fill an n x n grid
using numbers ranging from 1 to n. The player must also
adhere to the constraints given by the puzzle. These constraints
include not having duplicate numbers in a row, not having
duplicate numbers in a column, and requiring numbers that are
grouped together in a cluster to result to a certain target number
based on that cluster’s operation. These operations include
addition, subtraction, multiplication, and division.

Figure 1. An example of a layout for a 5x5 KenKen puzzle.
(Source: https://www.kenkenpuzzle.com/game)

Figure 1 shows an example of an empty 5x5 KenKen
puzzle. For ease of reference, columns in the grid will be
labeled alphabetically from left to right (starting from A) and
rows will be labeled numerically from top to bottom (starting
from 1). As an example, the square on the first row and third
column will be labeled as C01. Clusters refer to groupings in
the grid where numbers inside the cluster must result to that
cluster’s target number by a certain operation. For example, the

cluster formed by squares A03, B01, B02, and B03 must be
filled with numbers that add to eleven when summed together
(noted by the 11+ label on square B02).

In more detail, if the target number on a cluster is labeled as
n, the list of possible operations done on a cluster include:

• Addition (+): All numbers in the cluster must result to
n when added together. There can be one or more
squares in the cluster.

• Subtraction (-): Exactly two numbers are in the cluster.
The two numbers must have a difference of n.

• Multiplication (x): All numbers in the cluster must
result to n when multiplied together. There can be one
or more squares in the cluster.

• Division (÷): Exactly two numbers are in the cluster.
The value of n must be equal to the larger number
divided by the smaller number.

Figure 2. The solution for the puzzle on Figure 1. (Source:
https://www.kenkenpuzzle.com/game)

Figure 2 shows the solution for the puzzle provided in
Figure 1. As seen in the figure, each row and each column
contain no duplicate values and every number in each cluster
adheres to the constraints given by the cluster. For example, the
cluster formed by squares A03, B01, B02, and B03 result to the
number 60 when multiplied together.

This paper develops and evaluates two possible approaches
for solving KenKen puzzles, one using brute force and one
using backtracking. The two algorithms will be compared
against each other in terms of their respective speed in solving
the puzzle.

https://www.kenkenpuzzle.com/game
https://www.kenkenpuzzle.com/game

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

II. BASIC THEORY

A. Brute Force

The brute force algorithm is a straightforward approach to
solve a given problem. The brute force algorithm is usually
based on a problem statement and the concepts involved in that
problem. It solves a problem using a simple, direct, and
obvious way, which usually involves trying out all possible
combinations for a problem and determining which one is the
solution.

Most of the time, the brute force algorithm isn’t the most
efficient way to solve a problem because of its’ high time and
space complexity. It’s more suitable for problems that have low
input volume (n).

Even though it isn’t the most efficient way of solving a
problem, the brute force algorithm still has its’ merits. It’s
often the most simple and straightforward approach to solving
a problem. Besides that, almost all problems can be solved
using the brute force algorithm. There are even problems that
can only be solved by using brute force, such as finding the
largest element in an unordered array.

Some examples of where the brute force algorithm is being
used are in sequential search, counting factorials, string
matching, and matrix multiplication.

Figure 3. An example of brute force being used in string
matching (Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2021-
2022/Algoritma-Brute-Force-(2022)-Bag1.pdf)

Exhaustive search is a solution finding technique based on
the brute force algorithm for problems related to combinatorics.
The steps involved in exhaustive search are:

1. Enumerate all possible solutions in a systematic way.

2. Evaluate all possible solutions one by one and find the
best solution found so far.

3. After the search ends, the best solution found so far
will be the best solution.

In theory, exhaustive search will always result in a solution,
but the time and space spent on finding the solution tend to be
quite expensive.

B. Backtracking

Backtracking is an effective, structured, and systematic
problem-solving method used for both optimization and non-
optimization problems. It is a revision of exhaustive search. In

exhaustive search, all possible solutions are explored and
evaluated one by one. In backtracking, only options that lead to
the solution are explored. Other options that don’t lead to the
solution are ignored/pruned.

The set of all possible solutions for a problem is called a
solution space. For example, for The 0/1 Knapsack Problem
where n = 3, the solution is expressed by X = (x`1, x2, x3) where

xi  {0, 1} and the solution space is {(0, 0, 0), (0, 0, 1), (0, 1,
0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}.

The solution space can be organized into a tree-like
structure where each node represents the state of the problem
and each branch is labeled by values of xi. The path from the
tree’s root to a leaf node represents a possible solution and the
list of all possible solutions form a solution space. The
organization of a solution space tree is referred to as a state
space tree.

Figure 4. The solution space for The 0/1 Knapsack
Problem, n = 3 (Source:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/Algoritma-backtracking-2021-Bagian1.pdf)

Finding a solution using backtracking involves generating
nodes so that a path from the root to a leaf node is created. The
generation of nodes follows a depth-first-search order.
Generated nodes are called live nodes and live nodes that are
currently being expanded are called expand nodes. Each time
an expand node is expanded, the path that is being created by it
becomes longer. If said path doesn’t lead to the solution, the
expand node is killed and becomes a dead node. The function
used to kill the E-node is called a bounding function. When a
node dies, its child nodes are implicitly pruned as well. If the
creation of a path results in a dead node, the search continues
by backtracking to the node in the previous level and
continuing to generate one of its’ other child nodes. That node
becomes the new expand node. The search stops when a certain
goal node is reached.

III. IMPLEMENTATION

A. Technical Details

The solver for KenKen puzzles using backtracking and
brute force is implemented in C++. The program consists of
two classes, the Cell class and the KenKen class.

The Cell class represents a square in the puzzle’s grid. It
contains information such as the current value being set in that
cell, the target value and the operation being done in that cell’s

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2021-2022/Algoritma-Brute-Force-(2022)-Bag1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2021-2022/Algoritma-Brute-Force-(2022)-Bag1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Algoritma-backtracking-2021-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Algoritma-backtracking-2021-Bagian1.pdf

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

cluster, and the coordinates of each member of that cell’s
cluster.

Figure 5. The Cell class and its’ attributes

The KenKen class is where the main bulk of the program
resides. The attributes stored in the KenKen class consist of the
puzzle’s grid size, the grid, and solutionFound, a boolean value
that is true when a solution for the puzzle is found, false
otherwise.

Figure 6. The KenKen class and its’ attributes

The constructor of the KenKen class takes in a file path as
an argument and loads the contents of the file into its attributes.
The puzzle is stored in a txt file that stores the puzzle’s grid
size and each cluster that makes up the puzzle.

Figure 6. An example of a txt file for a 3x3 puzzle.

An example of a puzzle’s txt file is shown on Figure 6. The
first line represents the grid size of the puzzle. The lines
following that contain information about a cluster. The first
token on each line represents the target value for that cluster.
The second token represents the operation being done on that
cluster. The tokens after that represent the coordinates that
make up a cluster.

B. Implementing the Brute Force Algorithm

The approach used in implementing the brute force
algorithm for solving KenKen puzzles is by exhaustive search.
One way of doing this is by firstly generating all possible
permutations of numbers ranging from 1 to n for a single row.
For example, for an n x n puzzle where n = 5, there will be 5! =
120 possible permutations for a single row. After those
permutations are generated, the algorithm evaluates every
possible solution for the entire grid. In the previous case, where
there are 120 possible permutations for a single row and 5
available rows, the algorithm will evaluate 1205 possible
solutions for the grid.

Figure 8. The permuteNumbers function, used for
generating every possible permutation of a set of numbers from

1 to n.

Figure 9. The findSolutionBruteForce function

Figure 9 shows the implementation of the brute force
algorithm for solving KenKen puzzles. It utilizes the
permutations generated from Figure 8 to go through possible
solutions for a puzzle. Note that in this function, the possible
solutions generated after finding a solution will not be
evaluated. It uses the solutionFound attribute to terminate as
soon as a solution is found. This modification was made due to
time efficiency considerations.

The brute force algorithm iterates through every possible
permutation. The function’s i parameter determines the index
of the row to be set by one of the permutations. For every
permutation, it sets the values on the i-th row of the grid to a
possible permutation. Then, it sets the values of the next row
by recursively calling itself and incrementing i by one. It then
reverts the grid’s state to before the values of the i-th row were
set. When the value of i is equal to the grid’s size (when all the
rows are assigned to a permutation), the function checks
whether the possible solution is an actual solution. If it is, it
copies the grid to the grid attribute of the class and tries to
terminate itself.

Figure 10. The initial call to the brute force algorithm

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

C. Implementing the Backtracking Algorithm

Before implementing the backtracking algorithm, elements
of the puzzle are first mapped onto elements of the
backtracking algorithm.

1. Solution

The solution for this problem is expressed as an (n*n)-

tuple: X = (x1, x2, …, xn), where xi  Si and Si = {1, 2,

3, 4, 5, 6, 7, 8, 9}.

2. Generating function

The generating function T() returns the same values for
all xi. It will return numbers ranging from 1 to n.

3. Bounding function

Figure 11. The placeable function

The bounding function B() evaluates to true when (x1,
x2, x3, …, xk) doesn’t break any constraints. In this
case, the bounding function is the placeable function,
which checks whether the row, column, and cluster of
the cell that is being set a value is still valid.

Figure 12. The findSolutionBacktrack function

The findSolutionBacktrack function takes two arguments,
the first argument is the current state of the grid and the second,
k, is the index of the current value being set. The value of k
ranges from 0 to n * n – 1, where n is the size of the grid. The
function first translates the value of k to a row (i) and column
(j) index. It then iterates through numbers ranging from 1 to the
size of the grid. If the number is placeable in the cell at row i
and column j, it sets the value of that cell to that number. It
then checks whether the values in the grid form a solution. If it
does, the grid will be copied into KenKen’s grid attribute and
solutionFound will be marked as true. If the grid still has

missing values, the function will recursively call itself with an
incremented k value to set the next value in the grid.

Figure 13. The initial call to the backtracking algorithm

IV. TESTING AND ANALYSIS

A. Testing

The two algorithms will be tested in terms of their accuracy
and speed in generating the right solution. Tests will be done
using puzzles with varying grid sizes.

1. Test Case 1: 3 x 3 Puzzle

Figure 13. Test case 1

Figure 14. Results for test case 1

2. Test case 2: 4 x 4 Puzzle

Figure 15. Test case 2

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Figure 16. Results for test case 2

3. Test case 3: 5 x 5 Puzzle

Figure 17. Test case 3

Figure 18. Results for test case 3

4. Test case 4: 6 x 6 puzzle

Figure 19. Test case 4

Figure 20. Results for test case 4

Note that for puzzles with grid size 6 and upwards, the
brute force algorithm fails to find the solution in a
reasonable amount of time (less than 1 hour).

5. Test case 5: 7 x 7 puzzle

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Figure 21. Test case 5

Figure 22. Results for test case 5

B. Analysis

Test
cases

Time taken (µs)

Brute force Backtracking

1 296 442

2 281041 1491

3 85846835 2178

4 - 15186047

5 - 565711071

Table 1. Test case results

While both algorithms succeed at finding an accurate
solution for each test case that it finished, overall, the
backtracking algorithm is considerably faster than the brute
force algorithm. This showcases the effectiveness of the
pruning done by the backtracking algorithm for skipping
unnecessary steps.

The data in Table 1 shows an exponential growth in the
time needed for the brute force algorithm to complete a single
puzzle. When performing a search on an n x n puzzle, the brute
force algorithm makes n! permutations for a row. Because
there are n rows, the algorithm goes through a maximum of
(n!)n possible solutions for the puzzle, making it have a time
complexity of O(n!)n

, which is incredibly slow.

Test case 1 shows an anomaly in the speed of the two
algorithms. In this test case, the brute force algorithm is faster
than the backtracking algorithm. This might be due to the
smaller number of possibilities being checked by the brute
force algorithm when n is small combined with the fact that the
brute force algorithm generates solutions row by row instead of
cell by cell.

V. CONCLUSION

In this paper, two approaches for solving KenKen puzzles
are developed, one using brute force and one using
backtracking. The two algorithms also are compared against
each other in terms of their speed at solving the puzzle. The test
results show that the backtracking algorithm is considerably
faster than the brute force algorithm due to its nature of pruning
unpromising solutions.

VIDEO LINK AT YOUTUBE

https://youtu.be/ay1tKjsyQxk

ACKNOWLEDGMENT

The author would like to express their gratitude to the
following individuals:

1. God Almighty for the blessings and grace that
provided the author strength in writing and completing
this paper.

2. The author’s parents for their support and
encouragement throughout the writing process.

3. Dr. Ir. Rinaldi Munir, M.T., Dr. Nur Ulfa Maulidevi,
and Dr. Ir. Rila Mandala, lecturers of the Algorithm
Strategies course in the even semester of 2023/2024,
for providing knowledge that proved to be essential in
writing this paper.

The author would also like to express their gratitude to all
references utilized in this paper and would like to apologize if
there are any errors present in this paper.

REFERENCES

[1] Munir, Rinaldi. 2021. “Algoritma Runut-balik (Backtracking) (Bagian
1)”. https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/Algoritma-backtracking-2021-Bagian1.pdf, accessed on June 1st,
2024.

[2] Munir, Rinaldi. 2021. “Algoritma Runut-balik (Backtracking) (Bagian
2)”. https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-
2021/Algoritma-backtracking-2021-Bagian2.pdf, accessed on June 1st,
2024.

[3] Munir, Rinaldi. 2022. “Algoritma Brute Force (Bagian 1)”.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2021-
2022/Algoritma-Brute-Force-(2022)-Bag1.pdf, accessed on June 1st,
2024.

https://youtu.be/ay1tKjsyQxk
https://youtu.be/ay1tKjsyQxk
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Algoritma-backtracking-2021-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Algoritma-backtracking-2021-Bagian1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Algoritma-backtracking-2021-Bagian2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Algoritma-backtracking-2021-Bagian2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2021-2022/Algoritma-Brute-Force-(2022)-Bag1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2021-2022/Algoritma-Brute-Force-(2022)-Bag1.pdf

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

[4] Munir, Rinaldi. 2022. “Algoritma Brute Force (Bagian 2)”.
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2021-
2022/Algoritma-Brute-Force-(2022)-Bag2.pdf, accessed on June 1st,
2024.

[5] KenKen Puzzle Official Website. n.d. "KenKen Puzzle".
https://www.kenkenpuzzle.com/game, accessed on June 1st, 2024.

APPENDIX

The source code implemented in this paper can be found on

this GitHub repository:
https://github.com/neokoda/KenKen-Puzzle-Solver\

DECLARATION

I hereby declare that this paper that I have written is my own

work, not an adaptation or translation of someone else’s paper,

and not a result of plagiarism.

Bandung, 12 June 2024

Muhammad Neo Cicero Koda 13522108

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2021-2022/Algoritma-Brute-Force-(2022)-Bag2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2021-2022/Algoritma-Brute-Force-(2022)-Bag2.pdf
https://www.kenkenpuzzle.com/game
https://github.com/neokoda/KenKen-Puzzle-Solver/

